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The Approximation Problem



The Approximation Problem

The goal in the approximation problem is simple, just want 

a function TA(s) or HA(z) that meets the filter requirements.

1

1

ω

 LPT j

Will focus primarily on approximations of the standard 

normalized lowpass function

• Frequency scaling will be used to obtain other LP band edges

• Frequency transformations will be used to obtain HP, BP, and BR

responses
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The Approximation Problem
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 LPT j

 AT s =?

TA(s) is a rational fraction in s

Rational fractions in s have no discontinuities in 

either magnitude or phase response

No natural metrics for TA(s) that relate to 

magnitude and phase characteristics  (difficult to 

meaningfully compare TA1(s) and TA2(s))
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Magnitude Squared Approximating Functions
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Thus             is an even function of ω T jω  

It follows that              is a rational fraction in ω2 with real coefficients 
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T jω  Since            is a real variable, natural metrics exist for comparing 

approximating functions to   
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Magnitude Squared Approximating Functions
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If a desired magnitude response is given, it is common to find a rational 

fraction in ω2 with real coefficients, denoted as HA(ω2), that approximates 

the desired magnitude squared response and then obtain a function TA(s) 

that satisfies the relationship    
2 2

A AT jω = H ω

HA(ω2) is real so natural metrics exist for obtaining HA(ω2) 
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Obtaining TA(s) from HA(ω2) is termed the inverse mapping problem 

But how is TA(s) obtained from HA(ω2)  ?   

Review from Last Time
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Observation:   If z is a zero (pole) of HA(ω2), then –z, z*, and –z* are also 

zeros (poles) of HA(ω2) 

Thus, roots come as quadruples if off of the axis and as pairs if they lay on the axis

Review from Last Time



Magnitude Squared Approximating Functions

If a desired magnitude response is given, it is common to find a rational 

fraction in ω2 with real coefficients, denoted as HA(ω2), that approximates 

the desired magnitude squared response and then obtain a function TA(s) 

that satisfies the relationship    
2 2

A AT jω = H ω

Inverse mapping may not exist !

To make this approach practical it is essential that a 

method be developed for determining if an inverse 

mapping exists and, if it exists, to determine an

inverse mapping! 



Inverse MappingTheorem:  If HA(ω2) is a rational fraction with real 

coefficients with no poles or zeros of odd multiplicity on the real axis, then 

there exists a real number H0 such that  the function

is a minimum phase rational fraction with real coefficents that satisfies the 

relationship

where {z1, z2, …zm} are the upper half-plane zeros of HA(ω2) and exactly 

half of the real axis zeros, 

and where where {p1, p2, …pn} are the upper half-plane poles of HA(ω2) 

and exactly half of the real axis poles.
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Roots that Appear in TAM(s)

(but multiplied by j)
Roots of HA(ω2)

Example:



 
    

    

...

...

0 1 2 m

AM

1 2 n

H s-jz s-jz s-jz
T s

s-jp s-jp s-jp

 


 

Im

Re

Roots that appear in TAM(s)Roots of HA(ω2)
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Example:

Inverse does not exist because zeros 

are of odd multiplicity on the real axis

If inverse exists
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Rotate roots by 90o Roots of TAM(s)

If inverse exists
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• Coefficients of TAM(s) are real

• If x is a root of HA(ω2), then jx is a root of TAM(s)

• Multiplying a root by j is equivalent to rotating it by 90o cc in the complex plane

• Roots of TAM(s) are obtained from roots of HA(ω2) by multiplying by j

• Roots of TAM(s) are upper half-plane roots and exactly half of real axis roots all 

rotated cc by 90o

• If a root of HA(ω2) has odd multiplicity on the real axis, the inverse mapping 

does not exist

• Other (often many) inverse mappings exist but are not minimum phase 
(These can be obtained by reflecting any subset of the zeros or poles around the imaginary axis into the RHP)

Observations:

If inverse exists



 
    

    

...

...

0 1 2 m

AM

1 2 n

H s-jz s-jz s-jz
T s

s-jp s-jp s-jp

 


 

 
         

         

2

0 1 1 2 m

1 2

2 m2

A

n1 2 n

ω+z ω+z •...• ω+z

ω+p ω+p •.

H ω-z ω-z •...• ω-z •
H ω

ω-p ω-p • ..• ω...• ω-p • +p

  
  

 

  

If inverse exists

Im

Re

Im

Re

Im

Re

Im

Re

minimum 

phase

non minimum 

phase

o90

o90



Im

Re

Im

Re

Im

Re

Im

Re

o90

o90

All pass functions (and factors)

• Must not allow cancellations to take place in HA(ω2) to obtain all-pass TA(s)

• Must keep upper HP poles and lower HP zeros in HA(ω2) to obtain all-pass TA(s)

• All-pass TA(s) is not minimum phase

All pass TA(s)

Pole-zero cancellation

TA(s)=1



The Approximation Problem

1

1

ω

 LPT j

• Magnitude Squared Approximating Functions

• Inverse Transform

• Collocation

• Least Squares

• Pade Approximations

• Other Analytical Optimization

• Numerical Optimization

• Canonical Approximations
→Butterworth (BW)

→Chebyschev (CC)

→Elliptic

→Thompson

Approach we will follow:

 2

AH ω

   2

A AH ω T s



Collocation

Collocation is the fitting of a function to a set of points (or 

measurements) so that the function agrees with the 

sample at each point in the set.

The function that is of interest for using collocation when addressing the 

approximation problem is   2ω
A

H

x

f(x)

x

f(x)

Collocating 

Function
Often consider critically constrained functions



Collocation
Example:   Collocation points {(x1,y1), (x2,y2),(x3,y3)}

Polynomial collocating function (critically constrained)

  2

0 1 2f x  = a + a x + a x

Unknowns:  {a1,a2,a3}

Set of equations: 2

1 0 1 1 2 1

2

2 0 1 2 2 2

2

3 0 1 3 2 3

y  = a + a x + a x

y = a + a x + a x

y = a + a x + a x

These equations are linear in the unknowns {a1,a2,a3}
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1 1 01

2

2 2 2 1

2
3 23 3

x x ay

y x x a

y ax x

    
    

     
        

Y = X• A -1
A = X •Y

Can be expressed in matrix form
Solution:

Closed form solution exists when collocating to a polynomial



Collocation

Is it possible to get a closed-form solution when collocating to a rational fraction?

      1 1 2 2, , , ... ,k kx y x y x y  
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where k=m+n+1

The rational fraction is nonlinear in x !

 2 2

1 1 1 2 1 1 0 1 1 2 1 11 ... ...n n

n my b x b x b x a a x a x a x        
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1 0 1 1 2 1 1 1 1 1 2 1 1 1 1... ...n n

m ny a a x a x a x b x y b x y b x y        

This can be expressed as

Note this equation is linear in the unknowns {a0,a1,…am,b1,b2,…bn}



Collocation

Is it possible to get a closed-form solution when collocating to a rational fraction?
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Collocation

Is it possible to get a closed-form solution when collocating to a rational fraction?
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Y = Z •C

-1
C = Z • Y

Closed form solution when collocating to a rational fraction !



Collocation
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Applying to  2
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Collocation
Example: 
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Collocation
Example: 
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Collocation
Example: 

poles at 5s j 
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The approximation is reasonable but not too good



Collocation
Example: 
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• The problem was critically constrained from a function viewpoint (two 

variables and two equations) 

• Highly under-constrained as an approximation technique since the 

collocation points are also variables



Collocation
Example:  same              but with different collocation points
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Collocation

poles at 5s j 
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Choice of collocation points plays a big role on the approximation

Example:  same              but with different collocation points 2
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Collocation
Example:  same              but with different collocation points and different 

approximating function
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 

 
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a0=-80,  a1=20, b1=-16

Inverse mapping does not exist because roots of odd multiplicity on real axis



Collocation
Example:

xx

1 2

1

 2

AH ω

3
x

ω

 

 

 

 

 

 

 
 

 

1

1

0 1

1

2

0 1 2

A 2

1

0 1

1

a a 1 9
1 = 

1+b 9

a a 4 9 -27 243 ω
1 = H ω

1+b 4 9 1+ -27 243 ω

a a 9
0 = 

1+b 9

 


 









• This solution is equal to 1 at all frequencies except ω=3 where it is undefined

• Thus there is no solution with these collocation points

 
2

2 0 1
A 2

1

a a ω
H ω  = 

1+b ω



a0=1,  a1=-27/243, b1=-27/243



Collocation
Example:

In some situations, collocation causes a lot of ripple between the collocation points

x x x

x

1

ω

 2

AH ω



Collocation Observations

Fitting an approximating function to a set of data or points 
(collocation points)
– Closed-form matrix solution for fitting to a rational fraction in ω2

– Can be useful when somewhat nonstandard approximations are 
required

– Quite sensitive to collocation points

– Although function is critically constrained, since collocation 
points are variables, highly under constrained as an optimization 
approach

– Although fit will be perfect at collocation points, significant 
deviation can occur close to collocation points

– Inverse mapping to TA(s) may not exist

– Solution may not exist at specified collocation points



Collocation 

What is the major contributor to the limitations observed 

with the collocation approach? 

• Totally dependent upon the value of the desired response at a small but 

finite set of points  (no consideration for anything else)

• Highly dependent upon value of approximating function at a single point or 

at a small number of points

• Highly dependent upon the collocation points



The Approximation Problem

1

1

ω

 LPT j

• Magnitude Squared Approximating Functions

• Inverse Transform

• Collocation

• Least Squares

• Pade Approximations

• Other Analytical Optimization

• Numerical Optimization

• Canonical Approximations
→Butterworth (BW)

→Chebyschev (CC)

→Elliptic

→Thompson

Approach we will follow:

 2

AH ω

   2

A AH ω T s



Least Squares Approximation

To minimize the heavy dependence on a small number of points, will consider 

many points thus creating an over-constrained system

x

x

ω

 2

AH ω

x

x x

x

x

x x

c1 c2

ck

C...

C...

Ck-1

 
1

m
2i

i
2 i=0

A n
2i

i

i=1

aω

H ω  = 

bω





k > m+n+1

Approximating function can not be forced to go through all points

But, it can be “close” to all points in some sense



Least Squares Approximation

x

x

ω

 2

AH ω

x

x x

x

x

x x

c1 c2

ck

C...

C...

Ck-1

 
1

m
2i

i
2 i=0

A n
2i

i

i=1

aω

H ω  = 

bω





Define the error at point i by

   i D i A iε  = H ω  - H ω

where HD(ωi) is the desired magnitude squared response at ωi and where 

HA(ωi) is the magnitude squared response of the approximating function



Least Squares Approximation

x

x

ω

 2

AH ω

x

x x

x

x

x x

c1 c2

ck

C...

C...

Ck-1

 
1

m
2i

i
2 i=0

A n
2i

i

i=1

aω

H ω  = 

bω





   i D i A iε  = H ω  - H ω

Goal is to minimize some metrics associated with εi at a large number of points

N

1 i

i=1

C  = ε
N

2

2 i

i=1

C  = ε
N

2

3 i i

i=1

C  = w ε

wi a weighting function

Some possible cost functions

• Reduces emphasis on individual points

• Some much better than others from performance viewpoint

• Some much better than others from computation viewpoint



Least Squares Approximation

 
1

m
2i

i
2 i=0

A n
2i

i

i=1

aω

H ω  = 

bω




   i D i A iε  = H ω  - H ω

Least Mean Square (LMS) based cost functions have minimums that can be 

analytically determined for some useful classes of approximating functions 

HA(ω2)

N
2

3 i i

i=1

C  = w ε

wi a weighting function



Regression Analysis Review

 
n

k

k

k=0

F x  = a x

Consider an nth order polynomial in x

Consider N samples of a function   F x

   ˆ
N

i
i=1

F x F x

Define the summed square difference cost function as

    
N 2

i i

i=0

C = F x F x

where the sampling coordinate variables are
N

i i=1
X = x

A standard regression analysis can be used to minimize C with respect 

to {a0,a1, …an}

To do this, take the n+1 partials of C  wrt the ai variables



Regression Analysis Review

    
N 2

i i

i=0

C = F x F x  
n

k

k

k=0

F x  = a x

 
2

N n
k

k i i

i=0 k=0

C = a x F x
 

 
 

 

  0
N n

k

k i i

i=0 k=00

C
 = 2 a x F x

a

  
  

  
 

  0
N n

1 k

i k i i

i=0 k=01

C
 = 2 x a x F x

a

  
  

  
 

  0
N n

2 k

i k i i

i=0 k=02

C
 = 2 x a x F x

a

  
  

  
 

  0
N n

n k

i k i i

i=0 k=0n

C
 = 2 x a x F x

a

  
  

  
 

…

Taking the partial of C wrt each coefficient and setting to 0, we obtain the set of equations

This is linear in the aks.

X A F 

-1A X F 

A =

0

1

n

a

a

...

a

 
 
 
 
 
 

Solution is



Regression Analysis Review

X A F 

-1A X F 

A =

0

1

n

a

a

...

a

 
 
 
 
 
 

X ....

 
 
 
 
 
 
 

  
 
 
 
 
 
 
 

  

  

 

  

N N N
2 n

i i i

i=0 i=0 i=0

N N N
2 n+1

i i i

i=0 i=0 i=0

N N
2 n+2

i i

i=0 i=0

N N N
n n+1 2n

i i i

i=0 i=0 i=0

N+1 X X ... X

X X ... X

X X

...

X X ... X

 

 

 

 

0

0

2

0

0

...

N

i

i

N

i i

i

N

i i

i

N
n

i i

i

F x

x F x

F x F x

x F x









 
 
 
 
 
 
 

  
 
 
 
 
 
 
 









A few details about regression analysis:



Regression Analysis Review

    
N 2

i i

i=0

C = F x F x  
n

k

k

k=0

F x  = a x

 
2

N n
k

k i i

i=0 k=0

C = a x F x
 

 
 

 

-1A X F 

• Closed form solution

• Requires inversion of a (n+1) dimensional square matrix

• Not highly sensitive to any single measurement

• Widely used for fitting a set of data to a polynomial model

• Points need not be uniformly distributed

• Adding weights does not complicate solution

Observations about  Regression Analysis:

This analysis was restricted to a polynomial – will see how applicable 

to a rational fraction !



Least Squares Approximations of Transfer Functions

 

m
i

i

i=0
WLOG b =10n

i

i

i=0

a s

T s  =  

b s





 

   

   

m m
i ii i

i i

i=0 i=0
i odd i even

n n
i ii i

i i

i=0 i=0
i odd i even

-1 a ω -1 a ω j

T j  =  

-1 b ω -1 b ω j



   
   
   
      

   
   
   
      

 

 

 

   

   

2 2

2 2

m m
i ii i

i i

i=0 i=0
i odd i even

n n
i ii i

i i

i=0 i=0
i odd i even

-1 aω -1 aω

T j  =   

-1 bω -1 bω



   
   
   
      

   
   
   
      

 

 

|T(jω)| is highly nonlinear in <ak> and <bk>



Least Squares Approximations of Transfer Functions

 

m
i

i

i=0
WLOG b =10n

i

i

i=0

a s

T s  =  

b s





 

   

   

2 2

2 2

m m
i ii i

i i

i=0 i=0
i odd i even

n n
i ii i

i i

i=0 i=0
i odd i even

-1 aω -1 aω

T j  =   

-1 bω -1 bω



   
   
   
      

   
   
   
      

 

 

    
N 2

k k

k=1

C = T jω -T ωConsider the natural cost function

k

C

a



 both are highly nonlinear in

k

C

b





<ak> and <bk>

Closed form solution for optimal values of                              does not exist <ak> and <bk>



Least Squares Approximations of Transfer Functions

 

m
i

i

i=0
WLOG b =10n

i

i

i=0

a s

T s  =  

b s





Consider the cost function

1k

C

c

m

k





 

m
2i

i
2 i=0

A n
2i

i

i=0

c ω

H ω

dω






Consider

    
N 2

2 2

A k k

k=1

C = H ω -H ω

 

2
m

2i

iN
2i=0
kn

2ik=1
i

i=0

c ω

C = -H ω

dω

 
 
 
 
 
 






What about the sets of equations

1k

C

d

n

k




and

 
2

m n
2i 2 2i

i k iN
i=0 i=0

n
2ik=1

i

i=0

c ω -H ω dω

C = 

dω

 
 
 
 
 
 

 




Rewriting the cost function

1k

C

c

m

k




is linear in <ck>

1k

C

d

n

k




is highly nonlinear in <dk>

Closed form solution for optimal values of                              does not exist <ck> and <dk>



Least Squares Approximations of Transfer Functions

 

m
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i
2 i=0

A n
2i

i

i=0

c ω

H ω

dω





    

N 2
2 2

A k k

k=1

C = H ω -H ω

1k

C

c

m

k




is linear in <ck>

1k

C

d

n

k




is highly nonlinear in <dk>

if               is fixed, optimal value of          can be easily obtained 

 
2

m n
2i 2 2i

i k iN
i=0 i=0

n
2ik=1

i

i=0

c ω -H ω dω

C = 

dω

 
 
 
 
 
 

 




<dk> <ck>

if  poles of HA(ω2) are fixed, optimal value of zeros of HA(ω2) can be easily obtained 

But

equivalently,

Is this observation useful?



Least Squares Approximations of Transfer Functions
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2i 2 2i

i k iN
i=0 i=0
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2ik=1

i

i=0

c ω -H ω dω

C = 

dω

 
 
 
 
 
 

 




<dk><ck>

if  poles of HA(ω2) are fixed, optimal value of zeros of HA(ω2) can be easily obtained 

Are these observations useful?

 

ˆ

2
m n

2i 2 2i

i k iN
i=0 i=0

n
2ik=1

i

i=0

c ω -H ω dω

C = 

dω

 
 
 
 
 
 

 




if  poles of HA(ω2) are fixed in denominator of C, the partials of C wrt both         and

are linear in             and <dk><ck>

• Several optimization approaches can be derived from these observations

• Some will provide a LMS optimization of HA(ω2)

• No guarantee that inverse mapping exists

• Some may provide a good approximation even though not truly LMS

• Others may not be useful



Least Squares Approximations of Transfer Functions
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c ω -H ω dω

C = 

dω

 
 
 
 
 
 

 




Possible uses of these observations (four algorithms)

1. Guess poles and obtain optimal zero locations

2. Start with a “good” T(s) obtained by any means and improve by selecting optimal 

zeros

3. Guess poles and then update estimates of both poles and zeros, use new 

estimate of poles and again update both zeros and poles, continue until 

convergence or stop after fixed number of iterations

4. Guess poles and obtain optimal zeros.  Then invert function and cost and obtain 

optimal zeros (which are actually poles).  Then invert again and obtain optimal 

zeros.  Process can be repeated.  - Weighting may be necessary to de-

emphasize stop-band values when working with the inverse function



Least Squares Approximations of Transfer Functions
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 
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 




Comments/Observations about LMS approximations

1. As with collocation, there is no guarantee that TA(s) can be obtained from HA(ω2)

2. Closed-form analytical solutions exist for some useful mean square based cost functions

3. Any of the LMS cost functions discussed that have an analytical solution can have the terms 

weighted by a weight wi.  This weight will not change the functional form of the equations but 

will affect the fit

4. The best choice of sample frequencies is not obvious (both number and location)

5. The LMS cost function is not a natural indicator of filter performance

6. It is often used because more natural indicators are generally not mathematically tractable

7. The LMS approach may provide a good solution for some classes of applications but does not 

provide a universal solution



The Approximation Problem

1

1

ω

 LPT j

• Magnitude Squared Approximating Functions

• Inverse Transform

• Collocation

• Least Squares

• Pade’ Approximations

• Other Analytical Optimization

• Numerical Optimization

• Canonical Approximations
→Butterworth (BW)

→Chebyschev (CC)

→Elliptic

→Thompson

Approach we will follow:

 2

AH ω

   2

A AH ω T s



Pade’ Approximations

(from Wikipedia)

Henri Eugène Padé (December 17, 1863 – July 9, 1953) was a French

mathematician, who is now remembered mainly for his development of 

approximation techniques for functions using rational functions. 

The Pade’ approximations were discussed in his doctoral dissertation in 

approximately 1890

http://en.wikipedia.org/wiki/France
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Approximation
http://en.wikipedia.org/wiki/Rational_function


Pade’ Approximations

  i

D i

i=0

T s = c s




 
 

 
1

i

i

i=0
m,n

i

i

i=1

a s
A s

R s =
B s

b s

m

n








Consider the polynomial

The rational fraction Rm,n(s) is said to be a (m,n)th order Pade’ approximation of 

TD(s) if TD(s)B(s) agrees with A(s) through the first m+n+1 powers of s

Define the rational fraction Rm,n(s) by

Note the Pade’ approximation applies to any polynomial with the argument being 

either real, complex, or even an operator s

Can operate directly on functions in the s-domain



Pade’ Approximations

  ...2 3
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1 1
T s =1 + s + s + s

2! 3!

   
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 
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0 1 2
2,3 2 3

0 1 2 3

A sa a s a s
R s =

b b s b s b s B s

 


   

Example

Determine R2,3(s)

 ... 12 3 2 3 2

1 2 3 0 1 2

1 1
1 + s + s + s b s b s b s =a a s a s

2! 3!

    
         

    

     DT s B s A s

setting

obtain



Pade’ Approximations

  ...2 3

D

1 1
T s =1 + s + s + s

2! 3!

   
   

   

Example
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1 1a =1+b
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3 2 1b b b 1
0= + + +

2 6 24 5!

1

2

3

0

1

2

b =-.6

b =.15

b =-.01666

a =1

a =0.4

a =.05



Pade’ Approximations

Example

1

2

3

0

1

2

b =-.6

b =.15

b =-.01666

a =1

a =0.4

a =.05

 
2

2 3

1+ 0.4 s + 0.05s
T s

1- 0.6s + 0.15s - 0.016 s


Re

Im

T(s) has a pair of cc poles in the RHP and is thus unstable!

Poles can be reflected back into the LHP to obtain 

stability and maintain magnitude response

Re



Pade’ Approximations

 AT s  2

AH ω

 m,nR s  2

m,nR ω
?

If TA(s) is an all pole approximation, then the Pade’ approximation of 1/TA(s) 

is the reciprocal of the Pade’ approximation of TA(s)

Pade’ approximations can be made for either TA(s) or HA(ω2).

Is it better to do Pade’ approximations of TA(s) or HA(ω2)?

What relationship, if any, exists between                  and                ?   m,nR s  m,nR s



Pade’ Approximations

• Useful for order reduction of all-pole or all-zero approximations

• Can map an all-zero approximation to a realizable rational fraction in the 

s-domain

• Can extend concept to provide order reduction of higher-order rational 

fraction approximations

• Can always maintain stability or even minimum phase by reflecting any 

RHP roots back into the LHP

• Pade’ approximation is heuristic (no metrics associated with the approach)

• No guarantees about how good the approximations will be



The Approximation Problem

1

1

ω

 LPT j

• Magnitude Squared Approximating Functions

• Inverse Transform

• Collocation

• Least Squares

• Pade’ Approximations

• Other Analytical Optimization

• Numerical Optimization

• Canonical Approximations
→Butterworth (BW)

→Chebyschev (CC)

→Elliptic

→Thompson

Approach we will follow:

 2

AH ω

   2

A AH ω T s



Other Analytical Approximations

• Numerous analytical strategies have been 

proposed over the years for realizing a filter

• Some focus on other characteristics (phase, 

time-domain response, group delay)

• Almost all based upon real function 

approximations

• Remember – inverse mapping must exist if a 

useful function T(s) is to be obtained



Approximations

• Magnitude Squared Approximating Functions – HA(ω2)

• Inverse Transform - HA(ω2)→TA(s)

• Collocation

• Least Squares Approximations

• Pade Approximations

• Other Analytical Optimizations

• Numerical Optimization

• Canonical Approximations
– Butterworth

– Chebyschev

– Elliptic

– Bessel

– Thompson



Numerical Optimization

• Optimization algorithms can be used to obtain approximations in 
either the s-domain or the real domain

• The optimization problem often has a large number of degrees of 
freedom (m+n+1)

• Need a good cost function to obtain good approximation

• Can work on either coefficient domain or root domain or other 
domains

• Rational fraction approximations inherently vulnerable to local 
minimums

• Can get very good results

 

m
k

k
k=0

n
k

k
k=0

a s

T s =

1+ b s







End of Lecture 8


